Autokatalysatoren und Materialien etwa für Zahnimplantate könnten künftig robuster werden und sich einfacher herstellen lassen als bislang. Denn Chemiker des Max-Planck-Instituts für Kohlenforschung in Mülheim an der Ruhr haben einen Weg gefunden, Korund, eine besonders stabile Variante von Aluminiumoxid, in Form von Nanoteilchen herzustellen, und zwar durch simple Mechanochemie in einer Kugelmühle. Die Teilchen könnten unter anderem als widerstandsfähiges Trägermaterial in Autokatalysatoren oder als Ausgangsmaterial für besonders harte Keramiken dienen. Ein erstes Industrieunternehmen arbeitet schon daran, nach dem Mülheimer Rezept im großen Stil zu produzieren.

Durch Nanopartikel Bruchfestigkeit erhöhen

In seinen edelsten Varianten formt Korund dank Spuren von Chrom, Eisen oder Titan Rubine und Saphire, Materialwissenschaftler interessieren sich für ihn aber weniger als Schmuckstein. Da er es in puncto Härte beinahe mit Diamant aufnehmen kann und auch gegen Hitze und Chemikalien ausgesprochen beständig ist, wird Korund nicht nur für keramische Implantate in der Zahnheilkunde, sondern auch für Prothesen oder Schneidwerkzeuge verwendet. Noch bruchfester ließe sich die Keramik machen, wenn sie aus Nanopartikeln des Aluminiumoxids produziert würde. Ein solches Herstellungsverfahren bräuchte zudem weniger Energie. Vereinfachen könnten Nanopartikel aus Korund auch den Bau von Autokatalysatoren, deren katalytisch aktive Komponente damit zudem stabiler würde.

Mechanochemische Herstellung

Ein Pulver der winzigen Korundpartikel erhalten die Forscher, indem sie Brocken von Böhmit, einem wasserhaltigen Aluminiumoxid, das in dem häufig vorkommenden Erz Bauxit enthalten ist, schlicht drei Stunden lang in einer Kugelmühle mahlen und anschließend kurz erhitzen. Bislang konnten Chemiker Korund aus anderen Oxiden von Aluminium nur erzeugen, wenn sie die Ausgangsstoffe bei mehr als 1.000 Grad Celsius brannten oder bei eher milden Temperaturen von um die 500 Grad wochenlang unter hohen Druck setzten. Dann bildeten sich zudem keine Nanokristalle, sondern größere Partikel.

„Dass Nanopartikel aus Korund in einer Kugelmühle entstehen, haben wir zufällig festgestellt“, sagt Ferdi Schüth. Sein Team untersuchte, ob eine katalytische Reaktion in einer solchen Mühle besser abläuft, weil der Katalysator beim Mahlen immer wieder eine frische Oberfläche erhält, an der die Reaktionspartner zueinanderkommen können. Als Katalysator verwendeten sie dabei ein mit Goldpartikeln versetztes Aluminiumoxid und verfolgten das Geschehen in der Kugelmühle mit verschiedenen analytischen Methoden. Die offenbarten: Nach ein paar Stunden hatte sich ein Teil des Aluminiumoxids in Korund umgewandelt. „Das haben wir dann systematisch untersucht und dabei verschiedene Varianten des Aluminiumoxids als Ausgangsstoffe getestet“, sagt Amol Amrute, einer der federführenden Wissenschaftler in diesem Projekt.

Warum die Kugelmühle funktioniert

Inzwischen können die Chemiker auch erklären, warum ein so banaler Vorgang wie das Mahlen eine Route zu einem Mineral eröffnet, das sonst nur unter harschen Bedingungen und schon gar nicht in Nanoform zu bekommen ist. Zum einen beeinträchtigen die Defekte wie Risse, Brüche und Stufen, die beim Mahlen entstehen, die Stabilität von Korund weniger als die von weicheren Aluminiumoxiden. Korund entsteht deshalb bevorzugt. Zum anderen liefern die Stöße, die das Material in der Mühle erfährt, genau die mechanische Energie, die für den ziemlich aufwendigen Umbau der Kristallstruktur zum Korund nötig ist. Die vergleichsweise niedrigen Temperaturen bei dem Prozess verhindern zudem, dass sich die Nanoteilchen zu größeren Körnern verklumpen.

Mehr dazu in einem Beitrag vom 25. Oktober in Science:
High-surface-area corundum by mechanochemically induced phase transformation of boehmite Amol P. Amrute, Zbigniew Łodziana, Hannah Schreyer, Claudia Weidenthaler, Ferdi Schüth, Science  25 Oct 2019: Vol. 366, Issue 6464, pp. 485-489 DOI: 10.1126/science.aaw9377

Potenzielle Kunden haben bereits Interesse angemeldet, so dass derzeit ein Prozess entwickelt wird, um große Mengen der winzigen Korundpartikel gewissermaßen zu ermahlen.

Titelbild: Aus Böhmit, einem wasserhaltigen Aluminiumoxid, entstehen Korund-Nanopartikel mit einer Oberfläche von 140 Quadratmetern pro Gramm, wenn er etwa drei Stunden lang gemahlen wird. Bild: Amol Amrute für MPI für Kohlenforschung